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5 Polarization

Fig. 5.1(a) shows an electromagnetic wave with its electric field oscillating parallel to 
the vertical y axis. The plane containing the      vectors is called the plane of oscillation 
or vibration. We can represent the wave’s polarization by showing the extent of the 
electric field oscillations in a “head-on” view of the plane of oscillation, as in Fig. 5.1 
(b).  

5.1 Nature of polarized light

5.1.1 Linear polarization

E


Fig. 5.1  (a) The plane of 
oscillation of a polarized 
electromagnetic wave. (b) To 
represent the ploarization, 
we view the plane of 
oscillation “head-on” and 
indicate the amplitude of the 
oscillating electric field.  
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Fig. 5.2 Linear light.



Consider two orthogonal optical disturbances  

)1.5()cos(ˆ),( 0 tkzEitzE xx 


)2.5()cos(ˆ),( 0   tkzEjtzE yy


and

where      is the relative phase difference between the waves, both of which are 
traveling in the z-direction. 
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The resultant optical disturbance is the vector sum of these two perpendicular waves:   

)3.5().,(),(),( tzEtzEtzE yx




If             or is an integral multiple of           , the waves are said to be in phase. In that 
particular case Eq. 5.3 becomes

0 2

)4.5().cos()ˆˆ(),( 00 tkzEjEitzE yx 


Obviously, the resultant wave is also linearly polarized, as shown in Fig. 5.2. A single 
resultant electric-field oscillates, along a tilted line, consinusoidally in time [Fig. 5.2 
(b)].

This process of addition can be carried out equally well in reverse; that is, we resolve 
any plane-polarized wave into two orthogonal components.   

5.1.2 Circular polarization

Now we consider another particular case. That is,                            , in addition,     

where                                       Accordingly,

000 EEE yx 

,22  m .,2,1,0 m

)5.5()cos(ˆ),( 0 tkzEitzEx 

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Fig 5.3  Right-circular light.

and

)6.5().sin(ˆ),( 0 tkzEjtzEy 


The resultant wave is given by 

)7.5()],sin(ˆ)cos(ˆ[0 tkzjtkziEE  


as shown in Fig. 5.3. 
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The resultant electric field vector     is rotating clockwise at an angular frequency of     . 
Such a wave is said to be right-circularly polarized. In comparison, if                      

where                                      then   

E




E


,22  m
,,2,1,0 m

)8.5()].sin(ˆ)cos(ˆ[0 tkzjtkziEE  


The amplitude is unaffected, but        now rotates counter-clockwise, and the wave is 
referred to as left-circularly polarized.

A linearly polarized wave can be synthesized from two oppositely polarized 
circular waves of equal amplitude. In particular, if we add Eq. 5.7 to Eq. 5.8, we get a 
linearly polarized wave,  

5.1.3 Elliptical polarization

Now we consider a general case. Recall that 

)10.5()cos(0 tkzEE xx 

)9.5().cos(ˆ2 0 tkziEE 


and
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Expand the expression for         into    

and combine it with                                        to yield               

It follows from Eq. 5.10 that      

So Eq. 5.12 leads to     

)11.5().cos(0   tkzEE yy

yE

 sin)sin(cos)cos(0 tkztkzEE yy 

)cos(0 tkzEE xx 
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This is the equation of an ellipse making an angle       with the (Ex, Ey)-coordinate 
system (Fig. 5.4) such that   

Finally, on rearranging terms, we have 


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Fig. 5.4 Elliptical light.
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If                or equivalently                                                         we have familiar form 0 ,,25,23,2  
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Furthermore, if                               this can be reduced to  ,000 EEE xy 

)16.5(.2
0

22 EEE xy 

Clearly, it is a circle.

If      is an even multiple of     , Eq. 5.13 results in  
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And similarly for odd multiples of     , 
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Fig. 5.5  (a)  Various polarization configurations. 
(b) .        leads       by          , or alternatively ,      

leads         by           .

These are both straight lines having slopes of                     ; in other words, we have 
linear light. So, both linear and circular light may be considered to be special cases 
of elliptically polarized light.

Fig. 5.5 gives various polarization configurations. This very important diagram is 
labeled across the bottom  “      leads by       :                                          ” where these 
are the positive values of       to be used in Eq. 5.2.
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