5 Polarization

5.1 Nature of polarized light

5.1.1 Linear polarization

Fig. 5.1(a) shows an electromagnetic wave with its electric field oscillating parallel to the vertical y axis. The plane containing the \vec{E} vectors is called the plane of oscillation or vibration. We can represent the wave's polarization by showing the extent of the electric field oscillations in a "head-on" view of the plane of oscillation, as in Fig. 5.1 (b).

(a)

(b)

Fig. 5.1 (a) The plane of oscillation of a polarized electromagnetic wave. (b) To represent the ploarization, we view the plane of oscillation "head-on" and indicate the amplitude of the oscillating electric field.

Consider two orthogonal optical disturbances

$$
\begin{equation*}
\vec{E}_{x}(z, t)=\hat{i} E_{0 x} \cos (k z-\omega t) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{E}_{y}(z, t)=\hat{j} E_{0 y} \cos (k z-\omega t+\varepsilon) \tag{5.2}
\end{equation*}
$$

where ε is the relative phase difference between the waves, both of which are traveling in the z-direction.

Fig. 5.2 Linear light.

The resultant optical disturbance is the vector sum of these two perpendicular waves:

$$
\begin{equation*}
\vec{E}(z, t)=\vec{E}_{x}(z, t)+\vec{E}_{y}(z, t) \tag{5.3}
\end{equation*}
$$

If $\varepsilon=0$ or is an integral multiple of $\pm 2 \pi$, the waves are said to be in phase. In that particular case Eq. 5.3 becomes

$$
\begin{equation*}
\vec{E}(z, t)=\left(\hat{i} E_{0 x}+\hat{j} E_{0 y}\right) \cos (k z-\omega t) \tag{5.4}
\end{equation*}
$$

Obviously, the resultant wave is also linearly polarized, as shown in Fig. 5.2. A single resultant electric-field oscillates, along a tilted line, consinusoidally in time [Fig. 5.2 (b)].

This process of addition can be carried out equally well in reverse; that is, we resolve any plane-polarized wave into two orthogonal components.

5.1.2 Circular polarization

Now we consider another particular case. That is, $E_{0 x}=E_{0 y}=E_{0}$, in addition, $\varepsilon=-\pi / 2+2 m \pi$, where $m=0, \pm 1, \pm 2, \cdots$. Accordingly,

$$
\begin{equation*}
\vec{E}_{x}(z, t)=\hat{i} E_{0} \cos (k z-\omega t) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{E}_{y}(z, t)=\hat{j} E_{0} \sin (k z-\omega t) . \tag{5.6}
\end{equation*}
$$

The resultant wave is given by

$$
\begin{equation*}
\vec{E}=E_{0}[\hat{i} \cos (k z-\omega t)+\hat{j} \sin (k z-\omega t)] \tag{5.7}
\end{equation*}
$$

as shown in Fig. 5.3.

Fig 5.3 Right-circular light.

The resultant electric field vector \vec{E} is rotating clockwise at angular frequency of ω. Such a wave is said to be right-circularly polarized. In comparison, if $\varepsilon=\pi / 2+2 m \pi$, where $m=0, \pm 1, \pm 2, \cdots$, then

$$
\begin{equation*}
\vec{E}=E_{0}[\hat{i} \cos (k z-\omega t)-\hat{j} \sin (k z-\omega t)] . \tag{5.8}
\end{equation*}
$$

The amplitude is unaffected, but \vec{E} now rotates counter-clockwise, and the wave is referred to as left-circularly polarized.

A linearly polarized wave can be synthesized from two oppositely polarized circular waves of equal amplitude. In particular, if we add Eq. 5.7 to Eq. 5.8, we get a linearly polarized wave,

$$
\begin{equation*}
\vec{E}=2 E_{0} \hat{i} \cos (k z-\omega t) \tag{5.9}
\end{equation*}
$$

5.1.3 Elliptical polarization

Now we consider a general case. Recall that

$$
\begin{equation*}
E_{x}=E_{0 x} \cos (k z-\omega t) \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{y}=E_{0 y} \cos (k z-\omega t+\varepsilon) \tag{5.11}
\end{equation*}
$$

Expand the expression for E_{y} into

$$
E_{y} / E_{0 y}=\cos (k z-\omega t) \cos \varepsilon-\sin (k z-\omega t) \sin \varepsilon
$$

and combine it with $E_{x} / E_{0 x}=\cos (k z-\omega t)$ to yield

$$
\begin{equation*}
\frac{E_{y}}{E_{0 y}}-\frac{E_{x}}{E_{0 x}} \cos \varepsilon=-\sin (k z-\omega t) \sin \varepsilon \tag{5.12}
\end{equation*}
$$

It follows from Eq. 5.10 that

$$
\sin (k z-\omega t)=\left[1-\left(E_{x} / E_{0 x}\right)^{2}\right]^{1 / 2}
$$

So Eq. 5.12 leads to

$$
\left(\frac{E_{y}}{E_{0 y}}-\frac{E_{x}}{E_{0 x}} \cos \varepsilon\right)^{2}=\left[1-\left(\frac{E_{x}}{E_{0 x}}\right)^{2}\right] \sin ^{2} \varepsilon
$$

Finally, on rearranging terms, we have

$$
\begin{equation*}
\left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}-2\left(\frac{E_{x}}{E_{0 x}}\right)\left(\frac{E_{y}}{E_{0 y}}\right) \cos \varepsilon=\sin ^{2} \varepsilon . . \tag{5.13}
\end{equation*}
$$

This is the equation of an ellipse making an angle α with the $\left(\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}\right)$-coordinate system (Fig. 5.4) such that

$$
\begin{equation*}
\tan 2 \alpha=\frac{2 E_{0 x} E_{0 y} \cos \varepsilon}{E_{0 x}^{2}-E_{0 y}^{2}} \tag{5.14}
\end{equation*}
$$

Fig. 5.4 Elliptical light.

If $\alpha=0$ or equivalently $\varepsilon= \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \cdots$, we have familiar form

$$
\begin{equation*}
\left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}=1 \tag{5.15}
\end{equation*}
$$

Furthermore, if $E_{0 y}=E_{0 x}=E_{0}$, this can be reduced to

$$
\begin{equation*}
E_{y}^{2}+E_{x}^{2}=E_{0}^{2} \tag{5.16}
\end{equation*}
$$

Clearly, it is a circle.
If ε is an even multiple of π, Eq. 5.13 results in

$$
\begin{equation*}
E_{y}=\frac{E_{0 y}}{E_{0 x}} E_{x} \tag{5.17}
\end{equation*}
$$

And similarly for odd multiples of π,

$$
\begin{equation*}
E_{y}=-\frac{E_{0 y}}{E_{0 x}} E_{x} . \tag{5.18}
\end{equation*}
$$

These are both straight lines having slopes of $\pm E_{0 y} / E_{0 x}$; in other words, we have linear light. So, both linear and circular light may be considered to be special cases of elliptically polarized light.
Fig. 5.5 gives various polarization configurations. This very important diagram is labeled across the bottom " E_{x} leads by $E_{y}: 0, \pi / 4, \pi / 2,3 \pi / 4, \cdots$," where these are the positive values of ε to be used in Eq. 5.2.

Fig. 5.5 (a) Various polarization configurations.
(b) leads by E_{x}, or Ellernatik

$$
E_{y} \quad E_{x}^{\text {leads }} \quad \stackrel{\text { by }}{3 \pi / 2}
$$

